Abstract

Oxytocin receptor (OR) binding in the ventromedial hypothalamus (VMH) is regulated by testosterone (T) and its metabolites, estrogen (E2) and dihydrotestosterone (DHT). Previous studies have reported that OR binding increases in the VMH in castrated male rats when they are replaced with T or E2 compared to that in vehicle-treated animals. DHT alone had no effect on OR binding, but when given in combination with E2 appeared to have a synergistic effect. This study was designed to determine whether these effects of steroid hormones on OR binding in the VMH are associated with changes in OR messenger RNA (mRNA) expression. Male rats were castrated or sham operated and given T propionate (TP), E2 benzoate (EB), DHT plus EB, or an oil vehicle. OR mRNA was assessed using a rat complementary RNA OR probe and in situ hybridization techniques. OR binding to tissue slices was quantified autoradiographically using an OR antagonist, [125I]d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH2(9)] ornithine vasotocin. These experiments showed that TP and EB increased both OR mRNA and OR binding in the VMH significantly above levels in vehicle-treated animals. However, animals given both EB and DHT exhibited significantly lower OR mRNA expression and OR binding in the VMH compared to those in animals treated with TP or EB alone. These data indicate that increases in VMH OR binding in response to gonadal steroids are accompanied by changes at the mRNA level that correspond well in magnitude and direction with those in the OR-binding sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.