Abstract

Regulation of ovarian steroidogenesis in vitro by recombinant human insulin-like growth factor-I (IGF-I) and bovine insulin (b-insulin) was investigated in intact follicles and isolated follicular cells of carp, Cyprinus carpio at vitellogenic stage of oocyte maturation. In intact follicles, IGF-I and b-insulin stimulated testosterone and 17beta-estradiol production in vitro. In isolated theca cells, IGF-I and b-insulin stimulated testosterone production, whereas in granulosa cells, they stimulated 17beta-estradiol production when testosterone was added in the incubation medium as precursor substrate. In intact follicles and in theca cells, IGF-I and b-insulin had no effect on HCG-stimulated testosterone production. HCG-stimulated 17beta-estradiol production, however, was significantly increased by IGF-I and b-insulin. To clarify the mechanism of 17beta-estradiol production by the ovarian follicles during vitellogenic stage of carp, effects of IGF-I and b-insulin either alone or in combination with HCG on aromatase activity (conversion of testosterone to 17beta-estradiol) and cytochrome P450 aromatase (P450arom) gene expression were investigated in vitro. IGF-I and b-insulin alone stimulated aromatase activity and P450arom gene expression and significantly enhanced HCG-induced enzyme activity and P450arom gene expression. Our results thus indicate that IGF-I and b-insulin alone can stimulate testosterone and 17beta-estradiol production in vitellogenic follicles of C. carpio by stimulating aromatase activity and P450arom gene expression. Evidence also provided for the modulation of HCG-induced aromatase activity and P450arom gene expression by IGF-I and b-insulin in such follicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.