Abstract

Ovarian cancer G protein-coupled receptor 1 (OGR1) is a recently deorphanized G protein-coupled receptor shown to signal in response to low extracellular pH (↓pHo) or certain benzodiazepines. The pleiotropic nature of OGR1 signaling in human airway smooth muscle (HASM) cells suggests that OGR1 is a potential therapeutic target for the management of obstructive lung diseases. However, the basic pharmacological and regulatory features of OGR1 remain poorly understood. We employed model systems of heterologously expressed [human embryonic kidney 293 (HEK293) cells] or endogenous (HASM) OGR1 to assess changes in expression, subcellular localization, and signaling capabilities following acute or chronic treatment with ↓pHo or the benzodiazepines lorazepam and sulazepam. In HEK293 cells expressing OGR1, treatment with ↓pHo and/or lorazepam, but not sulazepam, caused rapid OGR1 internalization. In HASM cells, acute treatment with ↓pHo or benzodiazepines did not alter abundance of OGR1 mRNA; however, significant downregulation was observed following chronic treatment. Acute and chronic pretreatment of HASM cells with sulazepam or lorazepam resulted in receptor desensitization as demonstrated by reduced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) or p42/p44 upon rechallenge. Acid (acute but not chronic) pretreatment of HASM cells induced desensitization of OGR1-mediated VASP (but not p42/p44) phosphorylation. In contrast to a recent study reporting OGR1 upregulation and sensitization in cardiac tissue subject to ischemic/acidic insult, chronic OGR1 activation in multiple model systems did not increase OGR1 expression or signaling capacity. The ability to induce OGR1 internalization and desensitization was activator dependent, reflecting the ability of different activators to induce specific receptor confirmations and engagement of specific heterotrimeric G proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.