Abstract
Osteoclasts degrade bone by pumping molar quantities of HCl to dissolve the calcium salts of bone, an energy intensive process evidently supported by abundant mitochondria. This is the first study to directly examine the ability of various metabolites to serve as potential energy sources for osteoclastic bone resorption. Glucose, and to a lesser extent lactate, supported osteoclastic bone degradation. However, fatty acids (palmitate, myristate and stearate), essential amino acids plus 20 mM alanine, or ketone bodies (acetoacetate, β-hydroxybutyrate and α-ketoglutarate) did not support bone degradation. Resorption declined to 10-30% of glucose controls when fatty acids or ketoacids were substituted for glucose. Resorption was glucose concentration dependent, with maximal activity at ∼7 mM (KM∼3 mM). Glucose transport was linear for ∼15 minutes, specific for D-glucose, and inhibited by cytochalasin B. Osteoclasts cultured on bone transported glucose at almost twice the rate of those off bone (Vmax23 versus 13 nmols/mg/min, respectively) and medium acid accumulation paralleled glucose uptake, while the KMwas unchanged. We conclude that glucose is the principal energy source required for bone degradation. Further, characteristics of glucose transport are consistent with the hypothesis that fluctuations in serum glucose concentration are an important component in regulation of osteoclastic bone degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.