Abstract

The Escherichia coli ompA mRNA, encoding a highly abundant outer membrane protein, has served as a model for regulated mRNA decay in bacteria. The half-life of this transcript correlates inversely with the bacterial growth rate and is growth stage-dependent. The stability of the messenger is determined by the 5'-untranslated region which possesses cleavage sites for RNase E. Hfq binds to this region, is essential for controlling the stability and has been suggested to directly regulate ompA mRNA decay. Here we report that the 78 nucleotide SraD RNA, which is highly conserved among Enterobacteriaceae, acts in destabilizing the ompA transcript when rapidly grown cells enter the stationary phase of growth. During this growth-stage the expression of SraD RNA becomes strongly increased. The SraD-mediated decay of ompA mRNA depends on Hfq and in vitro studies revealed that Hfq facilitates binding of the regulatory RNA to the translational initiation region of the messenger. Deletion of sraD, however, does not significantly affect the stability of the ompA mRNA in slowly growing cells. Our results indicate that distinct regulatory circuits are responsible for growth phase- and growth rate-dependent control of the ompA mRNA stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.