Abstract
Multiple sclerosis (MS), the most common neurological disorder diagnosed in young adults, is characterized by autoimmune demyelination in the central nervous system (CNS). Promotion of remyelination in the brain and spinal cord is a potential strategy for therapeutic intervention in MS and other demyelinating diseases. Recent studies have shown that the development of oligodendrocytes, the myelin-forming cells of the CNS, is extensively controlled by growth factors. These factors regulate the proliferation, migration, differentiation, survival and regeneration of oligodendroglial cells and the synthesis of myelin, and often interact in a complex manner. Moreover, insulin-like growth factor I (IGF-I) has proven effective for therapy of experimental autoimmune encephalomyelitis (EAE), an animal model of autoimmune demyelination. In this review we summarize recent findings on the regulation of oligodendrocyte development and CNS myelination by growth factors, and discuss these findings in the context of possible clinical application for the therapy of neurological disease in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.