Abstract

CRH, a major mediator of the stress response, has been shown to exert potent immunomodulatory effects in vivo, through mechanisms that have not been elucidated yet. To determine the molecular pathways mediating the proinflammatory effects of peripheral CRH, we studied its role in the activation of nuclear factor-kappaB (NF-kappaB), a transcription factor crucial for the regulation of a variety of inflammatory mediator genes. Our studies demonstrate that, in mouse thymocytes, CRH induces the NF-kappaB DNA-binding activity in a time- and dose-dependent manner, with parallel degradation of its inhibitor protein inhibitor of NF-kappaB. The effect of CRH is not inhibited by dexamethasone and is mediated by the protein kinase A and protein kinase C signaling pathways. In vivo, we show that CRH-deficient mice respond to lipopolysaccharide administration by reduced activation of thymus NF-kappaB, despite their significantly elevated proinflammatory cytokine and their low corticosterone levels. These findings suggest a putative molecular pathway mediating the proinflammatory effects of peripheral CRH through induction of the NF-kappaB DNA binding activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.