Abstract

We examined the effects of endogenous basic proteins rich in the amino acid L-arginine on neuronal NO synthase activity by monitoring cyclic GMP formation in intact neuron-like neuroblastoma N1E-115 cells. Histone, protamine and myelin basic protein significantly stimulated cyclic GMP formation, both in a time- and concentration-dependent manner. These effects were blocked by hemoglobin and NO synthase inhibitors. Removal of the extracellular/intracellular Ca2+ gradient by a Ca2+ chelator completely abolished the cyclic GMP responses elicited by histone and protamine, suggesting that influx of extracellular Ca2+ might be involved in their activation of NO synthase. The effects of myelin basic protein on cyclic GMP formation, however, appeared to be due to Ca2+ release from intracellular stores. In cytosolic preparations of rat cerebellum, these basic proteins inhibited the metabolism of L-arginine into L-citrulline by NO synthase. We conclude from our findings that endogenous basic proteins might be involved in the regulation of neuronal NO synthase activity. Their effects on the enzyme could be either stimulatory or inhibitory, depending on whether the basic proteins exert their effects extracellularly or intracellularly, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.