Abstract
The E3-ubiquitinligase MYCBP2 regulates neuronal growth, synaptogenesis and synaptic plasticity by modulating several signaling pathways including the p38 MAPK signaling cascade. We found that loss of MYCBP2 in peripheral sensory neurons inhibits the internalization of transient receptor potential vanilloid receptor 1 (TRPV1) in a p38 MAPK-dependent manner. This prevented desensitization of activity-induced calcium increases and prolongs formalin-induced thermal hyperalgesia in mice. Besides its function in pain perception TRPV1 is also involved in the regulation of neuronal growth. Therefore, the observed effect of MYCBP2 on TRPV1 internalization could be part of the mechanisms underlying its well documented regulatory role in neuronal growth. The clarification of the mechanism is important for the understanding of the different MYCBP2-functions in diverse neuronal subpopulations and species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.