Abstract

Neurofilament (NF) phosphorylation has long been considered to regulate axonal transport rate and in doing so to provide stability to mature axons. Studies utilizing mice in which the C-terminal region of NF subunits (which contains the vast majority of phosphorylation sites) has been deleted has prompted an ongoing challenge to this hypothesis. We evaluate the collective evidence to date for and against a role for NF C-terminal phosphorylation in regulation of axonal transport and in providing structural support for axons, including some novel studies from our laboratory. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance can contribute to motor neuron disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.