Abstract

The Na+/Ca2+ exchanger (NCX1) is crucial in the regulation of [Ca2+]i in the cardiac myocyte. The exchanger is upregulated in cardiac hypertrophy, ischemia, and failure. This upregulation can have an effect on Ca2+ transients and possibly contribute to diastolic dysfunction and an increased risk of arrhythmias. Studies from both in vivo and in vitro model systems have provided an initial skeleton of the potential signaling pathways that regulate the exchanger during development, growth, and hypertrophy. The Ncx1 gene is upregulated in response to alpha-adrenergic stimulation. We have shown that this is via p38alpha activation of transcription factors binding to the Ncx1 promotor at the -80 CArG element. Interestingly, most of the elements, including the CArG element, which we have demonstrated to be important for regulation of Ncx1 expression are in the proximal 184 bp of the promotor. Using a transgenic mouse, we have shown that the proximal 184 bp is sufficient for expression of reporter genes in adult cardiomyocytes and for the correct spatiotemporal pattern of Ncx1 expression in development but not for upregulation in response to pressure overload.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.