Abstract
Effects of vertical magnetic field on the breakdown process of the nanosecond pulse discharge in atmospheric air are studied via two-dimensional particle-in-cell/Monte Carlo collision simulations. The numerical model is chosen and defined reasonably, with reference to experimental situations and literature reports. It is shown that when the applied magnetic field is strong enough, the evolutionary characteristics of the ionization channel are greatly affected due to the Lorentz force on charged particles. The impact is manifested macroscopically by the slowing down of the ionization channel evolution speed, the ionization channel shift, and the improvement of the discharge uniformity. At the microscopic level, the impact is mainly reflected in the regulation of the highest-energy electrons and the regulation of the overall electron energy distribution. That is, the adoption of a strong vertical magnetic field is capable of suppressing the generation of energetic electrons. The authors' results explicitly demonstrate the regulation of vertical magnetic field on the breakdown process of the nanosecond pulse discharge, which provides more comprehensive knowledge for the atmospheric air gap nanosecond pulse discharge physics and the theoretical basis for application design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.