Abstract

Regulation of NAD- and NADP-dependent isocitrate dehydrogenases (NAD-ICDH, EC 1.1.1.41, and NADP-ICDH, EC 1.1.1.42) by the level of reduced and oxidized pyridine nucleotides has been investigated in pea ( Pisum sativum L.) leaves. The affinities of mitochondrial and cytosolic ICDH enzymes to substrates and inhibitors were determined on partially purified preparations in forward and reverse directions. From the kinetic data, it follows that NADP +- and NAD +-dependent isocitrate dehydrogenases in mitochondria represent a system strongly responding to the intramitochondrial NADPH and NADH levels. The NADPH, NADP +, NADH and NAD + concentrations were determined by subcellular fractionation of pea leaf protoplasts using membrane filtration in mitochondria and cytosol in darkness and in the light under saturating and limiting CO 2 conditions. The cytosolic NADPH/NADP ratio was about 1 and almost constant both in darkness and in the light. In mitochondria, the NADPH/NADP ratio was low in darkness (0.2) and increased in the light, reaching 3 in limiting CO 2 conditions compared to 1 in saturating CO 2. At high reduction levels of NADP and NAD observed at limiting CO 2 in the light, i.e. when photorespiratory glycine is the main mitochondrial substrate, isocitrate oxidation in mitochondria will be suppressed and citrate will be transported to the cytosol (‘citrate valve’), where the cytosolic NADP-ICDH supplies 2-oxoglutarate for the photorespiratory ammonia refixation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.