Abstract

This study was conducted to explore the regulation of N-acetyl cysteine (NAC) on gut redox status and proliferation of selected microbiota in weaned piglets. A total of 150 newborn piglets from 15 litters were randomly divided by litter to the control group (normally suckling), the weaning group (fed the basal diet), and the NAC group (basal + NAC diet) with 5 litters per group. Activities of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and inhibition capacity of hydroxyl radical (IHR), and contents of malondialdehyde (MDA), H2O2, and NO in the ileum, colon, and cecum were analyzed to profile oxidative stress states. The real-time absolute quantitative PCR reaction was employed to quantify the amounts of total bacteria, Lactobacillus, Bifidobacterium, and Escherichia coli. The N-acetyl cysteine, as a universal antioxidant, was used to improve the redox status. Results showed that weaning stress resulted in the occurrence of gut oxidative stress and changes of gut microbiota (P < 0.05). Compared with the weaned piglets, the activities of ileal, colonic, and cecal T-AOC; ileal and colonic GSH-Px; cecal SOD; and colonic and cecal IHR were enhanced (P < 0.05), and the concentrations of ileal and cecal H2O2, ileal and colonic NO, and colonic MDA were reduced (P < 0.05) in the NAC-treated piglets. An increase (P < 0.05) in gut Lactobacillus and Bifidobacterium, accompanied with a decrease (P < 0.05) in Escherichia coli counts, was also observed in the NAC group. Bivariate correlation indicated that Lactobacillus and Bifidobacterium were positively correlated (P < 0.05) with the activities of T-AOC, GSH-Px, and SOD and inversely related (P < 0.05) to increased levels of H2O2, NO, OH, and MDA, and Escherichia coli showed a strong positive association (P < 0.05) with increased levels of free radicals and MDA and a negative association (P < 0.05) with the activities of antioxidant enzymes in intestines of weaned piglets. We concluded that NAC constructively regulated on the changes of the gut redox status and microbiota in piglets in response to weaning stress. The observed correlations implied that the NAC effects on the gut microbiota were confirmed, partly through an effect on oxidative stress in piglets, providing evidence that gut microbiota may be potentially improved by the modulation of the redox status by an antioxidant, which has relevance for gut health and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.