Abstract

Na+-K+-Cl- cotransporter type 2 (NKCC2) is confined to the apical membrane of the thick ascending limb of Henle, where it reabsorbs a substantial fraction of the ultrafiltered NaCl load. It is expressed along this nephron segment as three main splice variants (called NKCC2A, NKCC2B, and NKCC2F) that differ in residue composition along their second transmembrane domain and first intracellular cytosolic connecting segment (CS2). NKCC2 is known to be activated by cell shrinkage and intracellular [Cl-] reduction. Although the with no lysine (WNK) kinases could play a role in this response, the mechanisms involved are ill defined, and the possibility of variant-specific responses has not been tested thus far. In this study, we have used the Xenopus laevis oocyte expression system to gain further insight in these regards. We have found for the first time that cell shrinkage could stimulate NKCC2A- and NKCC2B-mediated ion transport by increasing carrier abundance at the cell surface and that this response was achieved (at least in part) by the enzymatic function of a WNK kinase. Interestingly, we have also found that the activity and cell surface abundance of NKCC2F were less affected by cell shrinkage compared with the other variants and that ion transport by certain variants could be stimulated through WNK kinase expression in the absence of carrier redistribution. Taken together, these results suggest that the WNK kinase-dependent pathway can affect both the trafficking as well as intrinsic activity of NKCC2 and that CS2 plays an important role in carrier regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.