Abstract
We have reported that the reduction in plasma membrane cholesterol could decrease cellular Na/K-ATPase α1-expression through a Src-dependent pathway. However, it is unclear whether cholesterol could regulate other Na/K-ATPase α-isoforms and the molecular mechanisms of this regulation are not fully understood. Here we used cells expressing different Na/K-ATPase α isoforms and found that membrane cholesterol reduction by U18666A decreased expression of the α1-isoform but not the α2- or α3-isoform. Imaging analyses showed the cellular redistribution of α1 and α3 but not α2. Moreover, U18666A led to redistribution of α1 to late endosomes/lysosomes, while the proteasome inhibitor blocked α1-reduction by U18666A. These results suggest that the regulation of the Na/K-ATPase α-subunit by cholesterol is isoform specific and α1 is unique in this regulation through the endocytosis-proteasome pathway. Mechanistically, loss-of-Src binding mutation of A425P in α1 lost its capacity for regulation by cholesterol. Meanwhile, gain-of-Src binding mutations in α2 partially restored the regulation. Furthermore, through studies in caveolin-1 knockdown cells, as well as subcellular distribution studies in cell lines with different α-isoforms, we found that Na/K-ATPase, Src, and caveolin-1 worked together for the cholesterol regulation. Taken together, these new findings reveal that the putative Src-binding domain and the intact Na/K-ATPase/Src/caveolin-1 complex are indispensable for the isoform-specific regulation of Na/K-ATPase by cholesterol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.