Abstract

The Vmax of myo-inositol transport increased 3-fold during epidermal growth factor (EGF)-induced growth and thyroid-stimulating hormone. (TSH)-induced differentiation in primary cultures of sheep and human thyrocytes. The Km remained unaltered. This up-regulation required the presence of insulin. The TSH-induced rise in myo-inositol transport commenced 8 to 16 h after the initial stimulus and achieved a plateau at 24 h. In human thyrocytes the change in Vmax was accompanied by an increase in the steady-state levels of mRNA for the myo-inositol transporter following treatment with either ligand. Examination of the metabolites of myo-inositol showed few significant changes after treatment of sheep thyrocytes with EGF for 24 h. This is consistent with maintenance of the intracellular concentration of myo-inositol as the cells enlarge in preparation for cell division. In TSH-treated cells, however, up-regulation of myo-inositol transport was linked with increased myo-inositol cycling across the cell membrane, increased phospholipase A2-mediated turnover of phosphatidylinositol and a concomitant increase in arachidonic acid turnover. Increased levels of myo-inositol phosphates were also noted 24 h after TSH treatment. These results indicate the initiation of secondary signalling events many hours after the primary stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.