Abstract

This study examined muscle glycogenolysis and the regulation of glycogen phosphorylase (Phos) activity during 15 min of cycling at 85% of maximal O2 consumption (VO2max) in control and high free fatty acid (FFA; Intralipid-heparin) conditions in 11 subjects. Muscle biopsies were sampled at rest and 1, 5, and 15 min of exercise, and glycogen Phos transformation state (%Phos alpha), substrate (Pi, glycogen), and allosteric regulator (ADP, AMP, IMP) contents were measured. Infusion of intralipid elevated plasma FFA from 0.32 +/- 0.04 mM at rest to 1.00 +/- 0.04 mM just before exercise and 1.12 +/- 0.10 mM at 14 min of exercise. In the control trial, plasma FFA were 0.36 +/- 0.04 mM at rest and unchanged at the end of exercise (0.34 +/- 0.03 mM). Seven subjects used less muscle glycogen (46.7 +/- 7.6%, mean +/- SE) during the Intralipid trial, and four did not respond. In subjects who spared glycogen, glycogen Phos transformation into the active (alpha) form was unaffected by high FFA except for a nonsignificant reduction during the initial 5 min of exercise. Total AMP and IMP contents were not significantly different during exercise between trials, but total ADP was significantly lower with Intralipid only at 15 min. The calculated free ADP, AMP, and Pi contents were lower with Intralipid but not significantly different. However, when the present results were pooled with the data from a previous study using the same protocol [Dyck et al., Am. J. Physiol. 265 (Endocrinol, Metab. 28): E852-E859, 1993], the free ADP, AMP, and Pi contents of all subjects who spared glycogen (n = 13) were significantly lower at 15 min in the Intralipid trial. The findings suggest that the elevation of plasma FFA during intense cycling spares muscle glycogen by posttransformational regulation of Phos. This may be due to blunted increases in the contents of AMP, an allosteric activator of Phos alpha, and Pi, a substrate for Phos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.