Abstract

In human disease and rodent models, immune responses in the intestinal mucosa can be damaging. Damage is characterised by villus atrophy, crypt hyperplasia and reduced ability to digest and absorb nutrients. In normal individuals active responses to harmless environmental antigens associated with food and commensal bacteria are controlled by the development of immunological tolerance. Similar pathological changes occur in piglets weaned early from their mothers. Active immune responses to food antigens are observed in these piglets, and we and others have hypothesised that the changes occur as a result of transient allergic immune responses to novel food or bacteria antigens. The normal mechanism for producing tolerance to food antigens may operate at induction (Peyer's patches and mesenteric lymph nodes) or at the effector stage (intestinal lamina propria). In our piglet studies immunological tolerance occurs despite the initial active response. Together with evidence from rodents, this observation suggests that active responses are likely to be controlled at the effector stage, within the intestinal lamina propria. Support for this mechanism comes from the observation that human and pig intestinal T-cells are susceptible to apoptosis, and that this process is accelerated by antigen. We suggest that the role of the normal mature intestinal lamina propria is a balance between immunological effector and regulatory function. In neonatal animals this balance develops slowly and is dependant on contact with antigen. Immunological insults such as weaning may tip the balance of the developing mucosal immune system into excessive effector or regulatory function resulting in transient or chronic allergy or disease susceptibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call