Abstract

Downregulation of mTOR (mechanistic target of rapamycin) can extend lifespan in multiple species, including mice. Growth hormone receptor knockout mice (GHRKO) and Snell dwarf mice have 40% or greater lifespan increase, and have lower mTORC1 function, which might reflect alteration in mTORC1 components or alteration of upstream proteins that modulate mTOR activity. Here we report reduction of mTORC components DEPTOR and PRAS40 in liver of these long-lived mice; these changes are opposite in direction to those that would be expected to lead to lower mTORC1 function. In contrast, levels of the upstream regulators TSC1 and TSC2 are elevated in GHRKO and Snell liver, kidney and skeletal muscle, and the ratio of phosphorylated TSC2 to total TSC2 is lower in the tissues of the long-lived mutant mice. In addition, knocking down TSC2 in GHRKO fibroblasts reversed the effects of the GHRKO mutation on mTORC1 function. Thus increased amounts of unphosphorylated, active, inhibitory TSC may contribute to lower mTORC1 function in these mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.