Abstract

The rate-limiting and regulated step in steroidogenesis, the conversion of cholesterol to pregnenolone, is facilitated by the steroidogenic acute regulatory protein (StAR) and cytochrome P450 cholesterol side-chain cleavage (P450scc). We have isolated cDNAs encoding StAR and P450scc from the Atlantic stingray, Dasyatis sabina, and characterized the steroidogenic activity of the encoded proteins using a heterologous expression system. Green monkey kidney (COS-1) cells cotransfected with D. sabina StAR and human P450scc/adrenodoxin reductase/adrenodoxin fusion (F2) constructs produced significantly more pregnenolone than cells transfected with the F2 construct alone. COS-1 cells transfected with a modified F2 construct (F2DS) in which human P450scc is replaced by D. sabina P450scc had higher rates than cells transfected with D. sabina P450scc alone. In other vertebrates, the stress peptide adrenocorticotropic hormone (ACTH) elicits its effects on corticosteroidogenesis in part through regulation of StAR and P450scc mRNAs. In vitro incubation of D. sabina interrenal tissue with porcine ACTH significantly increased intracellular cAMP and corticosteroid production. As demonstrated by quantitative PCR, ACTH also induced significant increases in mRNA abundance of both StAR and P450scc. Our results suggest that, as in higher vertebrates, chronic ACTH-induced glucocorticoid synthesis in elasmobranchs is mediated by regulation of primary steroidogenic mRNAs. This study is the first to demonstrate steroidogenic activity of an elasmobranch P450scc protein and express a composite elasmobranch steroidogenic pathway in a heterologous cell line. Also, the regulation of StAR and P450scc mRNAs has not previously been demonstrated in elasmobranch fishes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.