Abstract
ABSTRACT Localization of mRNAs is currently thought to be partially responsible for molecular sorting to specific compartments within the cell. In mammalian cells the best-studied example is the β-actin mRNA that is localized to the cell processes, and its localization is necessary in migratory responses of cells. It is reasonable to assume that mRNA localization within cells is coupled to transmembrane signalling due to extracellular factors, but little is known about such putative mechanisms. We show here that HB- GAM, an extracellular matrix-associated factor that enhances migratory responses in cells, is able to localize β- actin mRNA when locally applied to cells via microbeads. The HB-GAM-induced mRNA localization is specifically inhibited by low concentrations of heparin and by heparitinase treatment of cells, showing that cell-surface heparin-type glycans are required for the effect. The finding that soluble N-syndecan is also inhibitory suggests that the transmembrane proteoglycan N-syndecan, previously identified as an HB-GAM receptor, is involved in the mRNA-localizing effect of HB-GAM. Inhibition of the mRNA localization by the src-kinase inhibitor PP1 is compatible with an N-syndecan-mediated effect since the receptor function of N-syndecan has been recently found to depend on the src-kinase signalling pathway. The mRNA- localizing activity of N-syndecan is also suggested by the finding that affinity-purified anti-N-syndecan antibodies coated on microbeads are able to localize β-actin mRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.