Abstract

CD36 is an 88-kD integral membrane protein expressed on platelets, monocytes, macrophages, certain microvascular endothelia, and retinal pigment epithelium. It functions as an adhesive receptor for thrombospondin-1 (TSP-1), collagen, and malaria-infected erythrocytes and as a scavenger receptor for oxidized LDL and photoreceptor outer segments. The CD36-TSP-1 interaction plays a role in cell adhesion and the phagocytosis of apoptotic cells by macrophages. Because of the potential importance of the CD36-TSP-1 interaction in mediating atherogenic and inflammatory processes, we studied their expression in human peripheral blood monocytes exposed to soluble mediators known to regulate inflammation and atherogenesis. RNase protection assays showed 6- to 12-fold increases in CD36 mRNA in response to interleukin-4, monocyte colony-stimulating factor, and phorbol myristate acetate, while lipopolysaccharide and dexamethasone strongly downregulated CD36 mRNA. The downregulation of CD36 mRNA was associated with the disappearance of surface expression of CD36 antigen and loss of TSP-1 surface-binding capacity. Upregulation of CD36 mRNA was associated with a modest increase in surface antigen expression and a larger expansion of an intracellular pool of CD36. As with CD36, monocytes treated with monocyte colony-stimulating factor showed a rapid increase in TSP-1 mRNA expression. Moreover, while dexamethasone treatment decreased CD36 expression, it resulted in a rapid increase in TSP-1 mRNA, and while PMA increased CD36 mRNA, it rapidly decreased TSP-1 expression. Interferon gamma, which had no effect on CD36 mRNA, rapidly increased steady-state TSP-1 mRNA. Thus, expression of both CD36 and its ligand TSP-1 is regulated by soluble mediators, although certain mediators induce concordant changes and others discordant changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.