Abstract

The maintenance of oxygen homeostasis is critical for survival, and the master regulator of this process in metazoan species is hypoxia-inducible factor 1 (HIF-1), which controls both O(2) delivery and utilization. Under conditions of reduced O(2) availability, HIF-1 activates the transcription of genes, whose protein products mediate a switch from oxidative to glycolytic metabolism. HIF-1 is activated in cancer cells as a result of intratumoral hypoxia and/or genetic alterations. In cancer cells, metabolism is reprogrammed to favor glycolysis even under aerobic conditions. Pyruvate kinase M2 (PKM2) has been implicated in cancer growth and metabolism, although the mechanism by which it exerts these effects is unclear. Recent studies indicate that PKM2 interacts with HIF-1α physically and functionally to stimulate the binding of HIF-1 at target genes, the recruitment of coactivators, histone acetylation, and gene transcription. Interaction with HIF-1α is facilitated by hydroxylation of PKM2 at proline-403 and -408 by PHD3. Knockdown of PHD3 decreases glucose transporter 1, lactate dehydrogenase A, and pyruvate dehydrogenase kinase 1 expression; decreases glucose uptake and lactate production; and increases O(2) consumption. The effect of PKM2/PHD3 is not limited to genes encoding metabolic enzymes because VEGF is similarly regulated. These results provide a mechanism by which PKM2 promotes metabolic reprogramming and suggest that it plays a broader role in cancer progression than has previously been appreciated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.