Abstract

Proton FOF1-ATPase is the key enzyme in E. coli under fermentative conditions. In this study the role of E. coli proton ATPase in the μ and formation of metabolic pathways during the fermentation of mixture of glucose, glycerol and formate using the DK8 (lacking FOF1) mutant strain was investigated. It was shown that the contribution of FOF1-ATPase in the specific growth rate was ∼45 %. Formate was not taken up in the DK8 strain during the initial hours of the growth. The utilization rates of glucose and glycerol were unchanged in DK8, however, the production of succinate, lactate and ethanol was decreased causing a reduction of the redox state up to −450 mV. Moreover, the contribution of FOF1-ATPase in the interplay between H+ and H2 cycles was described depending on the bacterial growth phase and main utilizing substrate. Besides, the H2 production rate in the DK8 strain was decreased by ∼60 % at 20 h and was absent at 72 h. Δp was decreased from −157 ± 4.8 mV to −140 ± 4.2 mV at 20 h and from −195 ± 5.9 mV to −148 ± 4.4 mV at 72 h, compared to WT. Taken together it can be concluded that during fermentation of mixed carbon sources metabolic cross talk between FOF1-ATPase-TrkA-Hyd-Fdh-H is taking place for maintaining the cell energy balance via regulation proton motive force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call