Abstract

Melanoma differentiation associated factor 5 (MDA5), which belongs to the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) family, has been proved to be a key pattern recognition receptor of innate antiviral signaling in duck, which plays an important role in anti-Tembusu virus (TMUV) infection. However, laboratory of genetics and physiology 2 (LGP2), the third member of RLRs family, the regulatory function on antiviral innate immunity of MDA5 is currently unclear. In this study, we investigated the subcellular localization of duck LGP2 (duLGP2) and confirmed that it is an important regulator of the duMDA5-mediated host innate antiviral immune response. The present experimental data demonstrate that the overexpression of duLGP2 inhibits duMDA5 downstream transcriptional factor (IRF-7, IFN-β, and NF-κB) promoter activity, and duMDA5-mediated type I IFNs and ISGs expression were significantly suppressed by duLGP2 regardless of viral infection in vitro. The inhibition of duLGP2 on the antiviral activity of duMDA5 ultimately leads to an increase in viral replication. However, the overexpression of duLGP2 promotes expression of mitochondrial antiviral-signaling protein (MAVS) and duMDA5-mediated proinflammatory cytokines. This study provides a new rationale support for the duLGP2 regulates duMDA5-mediated anti-viral immune signaling pathway theory in duck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.