Abstract

It is increasingly evident that neuroinflammatory response is involved in the pathogenesis of Parkinson's disease. In this study, we examined whether alpha-synuclein, a major components of Lewy body that has been implicated in the modulation of neuroinflammation, regulates MMP-9 and tPA activity, which plays important roles in neurodegeneration as well as regeneration processes, in cultured rat primary glial cells. Monomeric alpha-synuclein dose-dependently increased MMP-9 but not MMP-2 activity as well as mRNA level from cultured rat primary astrocytes and microglial cells. Maximal stimulation was observed at 50 nM alpha-synuclein. In contrast, the activity of tPA was decreased by alpha-synuclein with only marginal changes in the level of mRNA encoding tPA, if any. Interestingly, same concentration of alpha-synuclein aggregates did not induce MMP-9 activity. Overexpression of alpha-synuclein in rat primary astrocytes similarly increased MMP-9 activity. Treatment of alpha-synuclein increased the phosphorylation of ERK1/2 and the inhibition of ERK1/2 reversed the changes in MMP-9 and tPA activity. These results suggest further functional role of alpha-synuclein via regulation of protease systems through modulation of ERK1/2 activity in brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.