Abstract
Annexin-A1 (AnxA1) is a glucocorticoid-induced protein with multiple actions in the regulation of inflammatory cell activation. The contribution of AnxA1 to human cell biology is not well understood. We investigated the contribution of AnxA1 and its receptor, formyl-peptide receptor 2 (FPR2), to the regulation of inflammatory responses in human normal lung fibroblasts (NLF). Silencing constitutive AnxA1 expression in NLF using small interfering RNA (siRNA) was associated with moderate but significant increases in tumor necrosis factor (TNF)-induced proliferation and interleukin (IL)-6 production, accompanied by reduction of ERK and NF-κB activity. AnxA1 regulation of ERK and NF-κB activation was associated with effects on proliferation. Blocking FPR2 using the specific antagonist WRW4 mimicked the effects of AnxA1 silencing on TNF-induced proliferation, IL-6, ERK, and NF-κB activation. AnxA1 silencing also impaired inhibitory effects of glucocorticoid on IL-6 production and on the expression of glucocorticoid-induced leucine zipper (GILZ), but blocking FPR2 failed to mimic these effects of AnxA1 silencing. These data suggest that AnxA1 regulates TNF-induced proliferation and inflammatory responses in lung fibroblasts, via effects on the ERK and NF-κB pathways, which depend on FPR2. AnxA1 also mediates effects of glucocorticoids and GILZ expression, but these effects appear independent of FPR2. These findings suggest that mimicking AnxA1 actions might have therapeutic potential in chronic inflammatory lung diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.