Abstract

Low-density lipoprotein (LDL) is the main carrier of cholesterol transport in plasma, which participates in regulating lipid homeostasis. Studies in mammals have shown that high levels of LDL in plasma absorbed by macrophages trigger the formation of lipid-rich foam cells, leading to the development of atherosclerotic plaques. Although lipid-rich atherosclerosis-like lesions have been discovered in the aorta of several fish species, the physiological function of LDL in fish macrophages remains poorly understood. In the present study, LDL was isolated from the plasma of large yellow croaker (Larimichthys crocea), and mass spectrometry analysis identified two truncated forms of apolipoprotein B100 in the LDL protein profile. Transcriptomic analysis of LDL-stimulated macrophages revealed that differentially expressed genes (DEGs) were enriched in various pathways related to lipid metabolism, as confirmed by the fact that LDL increased total cholesterol and cholesteryl esters content. Meanwhile, the gene and protein expression levels of perilipin2 (PLIN2), a DEG enriched in the PPAR signaling pathway, were upregulated in response to LDL stimulation. Importantly, knocking down plin2 significantly attenuates LDL-induced cholesterol accumulation and promotes cholesterol efflux. Furthermore, the transcription factor PPARγ, which is upregulated in response to LDL stimulation, can enhance the promoter activity of plin2. In conclusion, this study suggests that LDL may upregulate plin2 expression through PPARγ, resulting in cholesterol accumulation in fish macrophages. This study will facilitate the investigation of the function of LDL in regulating lipid homeostasis in macrophages and shed light on the evolutionary origin of LDL metabolism in vertebrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call