Abstract

Corynebacterium glutamicum is a biotin-auxotrophic bacterium and some strains efficiently produce glutamic acid under biotin-limiting conditions. In an effort to understand C. glutamicum metabolism under biotin limitation, growth of the type strain ATCC 13032 was investigated in batch cultures and a time-course analysis was performed. A transient excretion of organic acids was observed and we focused our attention on lactate synthesis. Lactate synthesis was due to the ldh-encoded l-lactate dehydrogenase (Ldh). Features of Ldh activity and ldh transcription were analysed. The ldh gene was shown to be regulated at the transcriptional level by SugR, a pleiotropic transcriptional repressor also acting on most phosphotransferase system (PTS) genes. Electrophoretic mobility shift assays (EMSAs) and site-directed mutagenesis allowed the identification of the SugR-binding site. Effector studies using EMSAs and analysis of ldh expression in a ptsF mutant revealed fructose 1-phosphate as a highly efficient negative effector of SugR. Fructose 1,6-bisphosphate also affected SugR binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call