Abstract

1,25(OH)2D has numerous actions on many tissues. Analogs of 1,25(OH)2D are being sought that are selective, to further an understanding of the mechanisms of action of 1,25(OH)2D and to improve its therapeutic efficacy. Toward these ends we examined eight analogs of 1,25(OH)2D for their ability to regulate 25OHD metabolism by keratinocytes. Choosing the three most potent, we then examined their ability to inhibit keratinocyte proliferation, stimulate cornified envelope formation (a marker of differentiation), and bind to the 1,25(OH)2D receptor (VDR). 1,25(OH)2-24F2-D, 1,25(OH)2-delta 16-D, and 1,25(OH)2-delta 16,23yne-D proved the most potent in inhibiting 1,25(OH)2D production and stimulating 24,25(OH)2D production, being approximately 10-100 times more potent than 1,25(OH)2D itself. 1,25(OH)2-delta 16-D had the highest affinity for the VDR (fourfold higher than that for 1,25(OH)2D itself) and had the greatest ability both to inhibit proliferation and to stimulate differentiation. 1,25(OH)2-delta 16,23yne-D also had a higher affinity for the VDR but was of less or equal potency in stimulating cornified envelope formation and inhibiting proliferation. 1,25(OH)2-24F2-D, which was the most potent regulator of 25OHD metabolism, had a lower affinity for the VDR and was less potent than 1,25(OH)2D in inhibiting proliferation. Our results indicate that even in the same cell different analogs have different rank orders of potency for the various actions of 1,25(OH)2D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.