Abstract

Accumulation of reactive oxygen species (ROS) exacerbates neuronal loss during seizure-induced excitotoxicity. Keap1 (Kelch-like ECH-associated protein1)-nuclear factor erythroid 2-related factor 2 (Nrf2) axis is one of the known active antioxidant response mechanisms. Our study focused on finding the factors influencing Keap1-Nrf2 axis regulation in temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) patients. Based on post-surgical follow-up data, patient samples (n = 26) were categorized into class 1 (completely seizure-free) and class 2 (only focal-aware seizures/auras), as suggested by International League Against Epilepsy (ILAE). For molecular analyses, double immunofluorescence assay and Western blot analysis were employed. A significant decrease in expression of Nrf2 (p < 0.005), HO-1; p < 0.02) and NADPH Quinone oxidoreductase1 (NQO1; p < 0.02) was observed in ILAE class 2. Keap1 (p < 0.02) and histone methyltransferases (HMTs) like SetD7 (SET7/9; SET domain-containing 7 histone lysine methyltransferase) (p < 0.009) and enhancer of zeste homolog 2 (EZH2; p < 0.02) and methylated histones viz., H3K4me1 (p < 0.001), H3K9me3 (p < 0.001), and H3K27me3 (p < 0.001) was upregulated in ILAE class 2. Nrf2-interacting proteins viz., p21 (p < 0.001) and heat shock protein 90 (HSP90; p < 0.03) increased in class 1 compared to class 2 patients. Upregulation of HMTs and methylated histones can limit phase II antioxidant enzyme expression. Also, HSP90 and p21 that interfere with Keap1-Nrf2 interaction could contribute to a marginal increase in HO-1 and NQO1 expression despite histone methylation and Keap1. Based on our findings, we conclude that TLE-HS patients prone to seizure recurrence were found to have dysfunctional antioxidant response, in part, owing to Keap1-Nrf2 axis. The significance of Keap1-Nrf2 signaling mechanism in generation of phase II antioxidant response. Keap1-Nrf2 controls antioxidant response through regulation of phase II antioxidant enzymes like HO-1 (heme oxygenase-1), NQO1 (NADPH-Quinone Oxidoreductase1), and glutathione S-transferase (GST). Release of Nrf2 from negative regulation by Keap1 causes its translocation into nucleus, forming a complex with cAMP response-element binding protein (CBP) and small Maf proteins (sMaf). This complex subsequently binds antioxidant response element (ARE) and elicits and antioxidant response involving expression of phase II antioxidant enzymes. Reactive oxygen species (ROS) modify Cysteine 151 residue, p62 (sequsetosome-1), and interacts with Nrf2- binding site in Keap 1. p21 and HSP90 prevent Nrf2 interaction with Keap1. At transcriptional level, histone methyltransferases like EZH2 (enhancer of zeste homologue2), and SetD7 (SET7/9; SET domain-containing 7 histone lysine methyltransferase) and corresponding histone targets viz., H3K27me3, H3K9me3, and H3K4me1 influence Nrf2 and Keap1 expression respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call