Abstract

Protein tyrosine kinases (PTK) of the Src family are thought to suppress K-Cl cotransport (KCC) activity via negative regulation of protein phosphatases. However, some PTK inhibitors reduce KCC activity, suggesting opposite regulation by different PTK families. We have reported previously that deoxygenation of sickle cells stimulates KCC and activates Syk (a Syk family PTK), but not Lyn (an Src family PTK). In this study the same results were obtained when PTK activities were measured under the conditions used to measure KCC activity and which prevent any change in intracellular [Mg(2+)]. Methyl-2,5-dihydroxycinnamate (DHC), a PTK inhibitor, was more selective for Syk than Lyn, while staurosporine (ST), a broad-specificity protein kinase inhibitor, inhibited Lyn more than Syk. Deoxygenation or 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolo[3,4- d] pyrimidine (pp2, a specific Src inhibitor) stimulated KCC independently. These effects were not additive and were inhibited by DHC. In contrast, ST-induced KCC activation was resistant to DHC, suggesting a different pathway of activation. Overall, these data indicate that Syk activity is required for KCC activation, either induced by deoxygenation of sickle cells, or mediated by Src inhibition in oxygenated cells, and that Syk and Src PTKs exert opposing and interconnected regulatory effects on the activity of the transporter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.