Abstract

In addition to its powerful vasoconstrictive activity, endothelin-1 (ET-1) is a potent agonist for stimulating a multitude of second messenger pathways. In the Rat-1 fibroblastic cell line, ET-1 induces a robust elevation of the intracellular levels of Ca2+, diacylglycerols (DGs), and inositol trisphosphate (IP3). Although low concentrations of ET-1 stimulate a significant increase in the rate of Ca2+ influx, this Ca2+ influx is not required for the observed increases in either IP3 or DG levels following ET-1 treatment, as both of these effects are observed even in the absence of extracellular Ca2+. The ability of ET-1 to stimulate Ca2+ influx shows a biphasic pattern, such that Ca2+ influx is stimulated at low ET-1 concentrations and inhibited at high concentrations. Investigations of the molecular mechanisms underlying this biphasic response indicate that elevated intracellular Ca2+ levels exert a negative feedback inhibition on Ca2+ influx, which can be relieved by the chelation of intracellular Ca2+. The ability of ET-1 to activate a number of distinct signal transduction pathways appears to have direct functional significance in determining the targeting of ET-1 activation. Short-term effects of ET-1 stimulation such as the induction of gene expression appear to be independent of ET-1's ability to activate protein kinase C (PKC) by elevating DG levels, as depletion of PKC activity has little or no effect on gene expression. In contrast, the ability of ET-1 to induce the rapid expression of the VL30 gene is totally dependent upon the ability of ET-1 to elevate intracellular Ca2+ levels above a specific threshold. Activation of PKC by ET-1, however, is essential for the long-term effects of ET-1 on cell proliferation and anchorage-independent growth, as the ability of ET-1 to promote DNA synthesis and to synergize with epidermal growth factor in augmenting anchorage-independent growth is significantly inhibited by prior PKC depletion. Thus, in fibroblasts, ET-1 appears to activate at least two bifurcating pathways: a Ca(2+)-sensitive pathway involved in the regulation of gene expression, and a PKC-dependent pathway required for the mitogenic effects of ET-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.