Abstract

The interstitial cell of hydra is a multipotent stem cell, which produces nerve cells as one of its differentiated cell types. The amount of interstitial cell commitment to nerve differentiation varies in an axially dependent pattern along the body column. The distribution of nerve cell density has the same equivalent axial pattern. These facts have led to speculation that the regulation of nerve cell commitment is dictated by the nerve cell density. We examined this question by assaying interstitial cell commitment behaviour in 2 cases where the normal nerve cell density of the tissue had been perturbed: (1) in epithelial hydra in which no nerve cells were present; and (2) in hydra derived from regenerating-tip isolates in which the nerve density was increased nearly 4-fold. We found no evidence of regulation of nerve cell commitment in response to the abnormal nerve cell densities. However, the typical axial pattern of nerve commitment was still obtained in both sets of experiments, which suggests that interstitial cell commitment to nerve differentiation is dependent on some parameter of axial location that is not associated directly with the local nerve cell density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.