Abstract

To evaluate the efficacy of epigallocatechin-3-gallate (EGCG), a potent antiinflammatory molecule, in regulating interleukin-1beta (IL-1beta)-induced production of the chemokines RANTES (CCL5), monocyte chemoattractant protein 1 (MCP-1/CCL2), epithelial neutrophil-activating peptide 78 (ENA-78/CXCL5), growth-regulated oncogene alpha (GROalpha/CXCL1), and matrix metalloproteinase 2 (MMP-2) activity in rheumatoid arthritis (RA) synovial fibroblasts. Fibroblasts obtained from RA synovium were grown, and conditioned medium was obtained. Cell viability was determined by MTT assay. RANTES, MCP-1, ENA-78, and GROalpha produced in culture supernatants were measured by enzyme-linked immunosorbent assay. MMP-2 activity was analyzed by gelatin zymography. Western blotting was used to study the phosphorylation of protein kinase C (PKC) isoforms and nuclear translocation of NF-kappaB. EGCG was nontoxic to RA synovial fibroblasts. Treatment with EGCG at 10 microM or 20 microM significantly inhibited IL-1beta-induced ENA-78, RANTES, and GROalpha, but not MCP-1 production in a concentration-dependent manner. EGCG at 50 microM caused a complete block of IL-1beta-induced production of RANTES, ENA-78, and GROalpha, and reduced production of MCP-1 by 48% (P < 0.05). Zymography showed that EGCG blocked constitutive, IL-1beta-induced, and chemokine-mediated MMP-2 activity. Evaluation of signaling events revealed that EGCG preferentially blocked the phosphorylation of PKCdelta and inhibited the activation and nuclear translocation of NF-kappaB in IL-1beta-treated RA synovial fibroblasts. These results suggest that EGCG may be of potential therapeutic value in inhibiting joint destruction in RA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call