Abstract

To study the oxidative stress level of the influenza virus A FM1 subset-infected mouse in intranasal inhalation as a model, we employ an ascorbyl radical's ESR (electron spin resonance) spectrum as an oxidative stress biomarker. These infected mice were pretreated with Ribavirin, ascorbic acid, superoxide dismutase (SOD) or Kegan Liyan oral prescription (KGLY, proprietary Chinese medicine for influenza and common cold) in the stomach tube for 3 days, and then followed by the virus-infecting for 4 days. On the 4th day, samples were collected. It is recognized the strength of ascorbyl radical's ESR signal (A(-.)) (a(H4 = 0.177) Gauss, g = 2.00517) denotes oxidative stress level in vivo and in vitro. The magnitude of ESR spectrum (28.65 +/- 10.71 AU) in mice infected with influenza virus was significantly higher than those of healthy control mice (19.10 +/- 3.61 AU). Serum A(-.) in mice treated with Ribavirin, ascorbic acid, SOD and KGLY declined to 19.70 +/- 6.05, 18.50 +/- 2.93 and 16.25 +/- 3.59, 18.40 +/- 2.14 AU respectively. It is close to A(-.) signal height in healthy controls via down-regulation of the influenza virus-caused oxidative stress level getting decline in the lung index of pneumonia as compare to those of untreated healthy and the influenza virus infected mice pneumonia. It is well known that SOD can prevent the influenza virus pneumonia enhancing mouse survival rate; Ribavirin can treat viral diseases. Data from this study suggested that KGLY may indirectly relieve influenza virus-infected pneumonia via down- regulation of virus caused oxidative stress coupled with a redox reaction cascade as ribavirin, ascorbic acid and SOD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.