Abstract

A quantitative model for the regulation of replication of the low copy number IncFII plasmid NR1 in the Escherichia coli cell division cycle has been developed. The initiation of NR1 replication requires a cis-acting initiator protein whose synthesis is regulated by several mechanisms. The NR1 regulatory processes include co-operative protein-protein interactions in the formation of an active transcription repressor, the interaction of repressor with a rightward operator site in the control of transcription of the initiator gene, and the interaction of an inhibitor RNA transcript with the initiator mRNA in the control of translation of the initiation protein. A statistical thermodynamic model was used to predict probable configurations of the regulatory processes in a single growing cell. These probabilities were coupled by a kinetic model to the events of the cell cycle, such as initiation of mRNA transcription and protein translation, and the initiation of plasmid DNA replication. Parameter values were chosen so that the simulated values for plasmid copy number and the intracellular concentrations of repressor protein and mRNA agreed with experimentally determined estimates. A number of different copy number mutants that have altered one or another of the regulatory processes were simulated by the model. The contributions of each of the regulatory processes toward the overall stability of inheritance of plasmid NR1 in a population of cells in culture were examined. These simulations predict a very stable pattern of inheritance for plasmid NR1 despite its low copy number, in agreement with experimental observation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call