Abstract

Background: Class IA phosphoinositide 3-kinases (PI 3-kinases) have been implicated in the regulation of several cellular processes including cell division, cell survival and protein synthesis. The size of Drosophila imaginal discs (epithelial structures that give rise to adult organs) is maintained by factors that can compensate for experimentally induced changes in these PI 3-kinase-regulated processes. Overexpression of the gene encoding the Drosophila class IA PI 3-kinase, Dp110, in imaginal discs, however, results in enlarged adult organs. These observations have led us to investigate the role of Dp100 and its adaptor, p60, in the control of imaginal disc cell size, cell number and organ size.Results: Null mutations in Dp110 and p60 were generated and used to demonstrate that they are essential genes that are autonomously required for imaginal disc cells to achieve their normal adult size. In addition, modulating Dp110 activity increases or reduces cell size in the developing imaginal disc, and does so throughout the cell cycle. The inhibition of Dp110 activity reduces the rate of increase in cell number in the imaginal discs, suggesting that Dp110 normally promotes cell division and/or cell survival. Unlike direct manipulation of cell-cycle progression, manipulation of Dp110 activity in one compartment of the disc influences the size of that compartment and the size of the disc as a whole.Conclusions: We conclude that during imaginal disc development, Dp110 and p60 regulate cell size, cell number and organ size. Our results indicate that Dp110 and p60 signalling can affect growth in multiple ways, which has important implications for the function of signalling through class IA PI 3-kinases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call