Abstract

Heavy chain isotype switch recombination is preceded by the appearance of RNA initiating 5' of the specific switch region which will undergo recombination. In an effort to understand the potential function of germline transcripts in switch recombination and the degree to which the regulation of germline transcripts correlates with the regulation of switching, we studied this process in the murine B-lymphoma cell line I.29μ, which in the presence of bacterial lipopolysaccharide (LPS) switches primarily to IgA and less frequently to IgE. Levels of α-germline transcripts initiating upstream of α switch (S α ) sequences are elevated in clones of this line which switch well as compared to clones which switch less frequently. TGFβ 1 has been shown to increase α-germline transcripts and switching to IgA expression in LPS-stimulated murine splenic B-cells. We now demonstrate in I.29μ cells that TGFβ also increases switching to IgA and increases the level of α-germline transcripts 5 to 9 fold. Nuclear run-on analysis shows that this increase is at the level of transcription. Thus, TGFβ appears to direct switching to IgA by inducing transcription from the unrearranged S α - C α DNA segment. Germline α RNA is quite stable in I.29μ cells, having a half life of about 3 to 5 hours, and we find only slight stabilization in the presence of TGFβ. Levels of e-germline transcripts are not increased by TGFβ . IL-4, which modestly increases switching to IgA in I.29μ cells, slightly increases trancription of α-germline RNA. However, we present evidence suggesting that endogenously produced IL-4 may also act at additional levels to increase switching to IgA. IFNγ, which reduces IgA expression in these cells, also reduces the level of α-germline transcripts. IFNγ also reduces the level of e-germline transcripts induced by IL-4. Our results support the hypothesis that the regulation of transcription of particular switch sequences by cytokines in turn regulates the specificity of recombination. In studies aimed at identifying other signalling pathways that promote class switching, we discovered that inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) increase lipopolysaccharide (LPS)-induced switching to IgA in the B cell lymphoma I.29μ and to IgG 1 in LPS + IL-4-treated splenic B cells. PARP, which binds to and is activated by DNA strand breaks, catalyzes the removal of ADP-ribose from NAD + and poly(ADP-ribosylation) of chromatin-associated acceptor proteins. This enzyme is believed to function in cellular processes involving DNA strand breaks as well as in modulating chromatin structure. In I.29μ cells, PARP inhibitors increase IgA switching by day 2 and cause a 5-fold average increase in switching on day 3 as assayed by immunofluorescence microscopy. The PARP inhibitor, nicotinamide, also causes a reduced intensity of hybridization of C μ and C α specific probes to genomic DNA fragments containing the expressed VDJ-C μ and the…

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.