Abstract

Guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) activated the I(Cl,swell) anion channel in N1E115 neuroblastoma cells in a swelling-independent manner. GTPgammaS-induced current was unaffected by ATP removal and broadly selective tyrosine kinase inhibitors, demonstrating that phosphorylation events do not regulate G protein-dependent channel activation. Pertussis toxin had no effect on GTPgammaS-induced current. However, cholera toxin inhibited the current approximately 70%. Exposure of cells to 8-bromoadenosine 3',5'-cyclic monophosphate did not mimic the effect of cholera toxin, and its inhibitory action was not prevented by treatment of cells with an inhibitor of adenylyl cyclase. These results demonstrate that GTPgammaS does not act through Galpha(i/o) GTPases and that Galpha(s)/Gbetagamma G proteins inhibit the channel and/or channel regulatory mechanisms through cAMP-independent mechanisms. Swelling-induced activation of I(Cl,swell) was stimulated two- to threefold by GTPgammaS and inhibited by 10 mM guanosine 5'-O-(2-thiodiphosphate). The Rho GTPase inhibitor Clostridium difficile toxin B inhibited both GTPgammaS- and swelling-induced activation of I(Cl,swell). Taken together, these findings indicate that Rho GTPase signaling pathways regulate the I(Cl,swell) channel via phosphorylation-independent mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.