Abstract

The effects of guanosine 3',5'-cyclic monophosphate (cGMP) on the secretory response of activated human neutrophils were investigated using LY-83583, an inhibitor of soluble guanylate cyclase, and L-arginine, the precursor of nitric oxide formation. A 30% release of myeloperoxidase (MPO) and lactoferrin (LF) from the primary and specific granules, respectively, was detected by enzyme-linked immunosorbent assay in adhered neutrophils stimulated with 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) or 20 microM A-23187. LY-83583 (100 microM) inhibited the release of both LF and MPO after stimulation with FMLP or A-23187. Conversely, preincubation of neutrophils with 0.5 mM L-arginine augmented the release of LF and MPO in FMLP- and A-23187-stimulated cells. Concurrent with the increase in the degranulation response was an elevation of cGMP levels in L-arginine-treated cells, while stimulated cGMP levels were reduced in LY-83583-treated cells. Furthermore, cGMP-dependent protein kinase (G-kinase) activity was reduced in LY-83583-treated cells, as determined by the delay in G-kinase translocation to intermediate filaments and the inhibition of vimentin phosphorylation. Degranulation, elevation of cGMP levels, and targeting of G-kinase were also dependent on the concentration of A-23187 or FMLP. These data suggest that activators of neutrophil degranulation mediate this response through a cGMP-dependent protein kinase mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call