Abstract

We have examined the effects of protein synthesis inhibition on histone gene expression during the HeLa cell cycle. Histone mRNAs, which normally are rapidly degraded in the absence of DNA synthesis, persist and increase in concentration when translation is inhibited before DNA replication is halted. This is not a function of polysomal shielding of these mRNAs from active degradation mechanisms since inhibitors of translation initiation alone effect stabilization and induction. The superinduction of histone mRNAs by protein synthesis inhibition is effective at the G1/S border, and in the S-phase and non-S-phase periods of the cell cycle. However, the relative increase in histone mRNA is greater when cells not synthesizing DNA are treated with a protein synthesis inhibitor than when S-phase cells are so treated. Non-histone mRNAs examined are not superinduced by translation inhibition. Transcription rates from both histone and non-histone genes increase after protein synthesis inhibition. Although the decrease in histone gene transcription associated with DNA synthesis inhibition is prevented and reversed by protein synthesis inhibition, we have no evidence that histone gene-specific transcriptional regulation is dependent on protein synthesis. Transcriptional increases may contribute to the superinduction effect but cannot explain its differential extent during the cell cycle, since these increases are similar when replicating or nonreplicating cells are treated with a protein synthesis inhibitor. We believe that changes in histone mRNA stability can account for much of the differential superinduction effect. Our results indicate a requirement for continuing protein synthesis in the cell cycle regulation of histone mRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.