Abstract
Human GH binds to its receptor (GHR) on target cells and activates multiple intracellular pathways, leading to changes in gene expression, differentiation, and metabolism. GHR deficiency is associated with growth and metabolic disorders whereas increased GHR expression has been reported in certain cancers, suggesting that the GHR gene requires tight controls. Several regulatory mechanisms have been found within its 5'-untranslated region (UTR) promoter and coding regions. However, the 3'-UTR has not been previously examined. MicroRNAs (miRNAs) are small (19-22 nucleotides) noncoding RNAs that downregulate gene expression mainly through targeting the 3'-UTR of mRNAs and enhancing their degradation or inhibiting translation. In the present study, we investigated whether miRNAs regulate GHR expression. To define putative miRNA binding sites in the GHR 3'-UTR, we used multiple in silico prediction tools, analyzed conservation across species and the presence of parallel sites in GH/IGF axis-related genes, and searched for reports linking miRNAs to GHR-related physiological or pathophysiological activities. To test prioritized sites, we cotransfected a wild-type GHR 3'-UTR luciferase reporter vector as well as miRNA binding site mutants into HEK293 cells with miRNA mimics. Furthermore, we tested whether the miRNAs altered endogenous GHR mRNA and protein levels in HEK293 cells and in 2 cancer cell lines (MCF7 and LNCaP). Our experiments have identified miRNA (miR)-129-5p, miR-142-3p, miR-202, and miR-16 as potent inhibitors of human GHR expression in normal (HEK293) and cancer (MCF7 and LNCaP) cells. This study paves the way for the development of miRNA inhibitors as therapeutic agents in GH/GHR-related pathophysiologies, including cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.