Abstract

In clathrin-independent endocytosis, Hook1, a microtubule- and cargo-tethering protein, participates in sorting of cargo proteins such as CD98 (encoded by SLC3A2) and CD147 (encoded by BSG) into recycling endosomes. However, the molecular mechanism that regulates Hook1-mediated endosomal sorting is not fully understood. In the present study, we found that γ-taxilin is a novel regulator of Hook1-mediated endosomal sorting. γ-Taxilin depletion promoted both CD98-positive tubular formation and CD98 recycling. Conversely, overexpression of γ-taxilin inhibited the CD98-positive tubular formation. Depletion of Hook1, or Rab10 or Rab22a (which are both involved in Hook1-mediated endosomal sorting), attenuated the effect of γ-taxilin depletion on the CD98-positive tubular formation. γ-Taxilin depletion promoted CD147-mediated spreading of HeLa cells, suggesting that γ-taxilin might be a pivotal player in various cellular functions in which Hook1-mediated cargo proteins are involved. γ-Taxilin bound to the C-terminal region of Hook1 and inhibited its interaction with CD98; the latter interaction is necessary for sorting CD98. We suggest that γ-taxilin negatively regulates the sorting of Hook1-mediated cargo proteins into recycling endosomes by interfering with the interactions between Hook1 and the cargo proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call