Abstract

High affinity iron uptake in Saccharomyces cerevisiae requires a metal reductase, a multicopper ferroxidase, and an iron permease. Fet3, the apparent ferroxidase, is proposed to facilitate iron uptake by catalyzing the oxidation of reductase-generated Fe(II) to Fe(III) by O2; in this model, Fe(III) is the substrate for the iron permease, encoded by FTR1 (Kaplan, J., and O'Halloran, T. V. (1996) Science 271, 1510-1512). We show here that dioxygen also plays an essential role in the expression of these iron uptake activities. Cells grown anaerobically exhibited no Fe(III) reductase or high affinity iron uptake activity, even if assayed for these activities under air. Northern blot analysis showed that the amount of those mRNAs encoding proteins associated with this uptake was repressed in anaerobic cultures but was rapidly induced by exposure of the culture to dioxygen. The anaerobic repression was reduced in cells expressing an iron-independent form of the trans-activator, Aft1, a protein that regulates the expression of these proteins. Thus, the effect of oxygenation on this expression appeared due at least in part to the state or distribution of iron in the cells. In support of this hypothesis, the membrane-permeant Fe(II) chelator, 2, 2'-bipyridyl, in contrast to the impermeant chelator bathophenanthroline disulfonate, caused a strong and rapid induction of these transcripts under anaerobic conditions. An increase in the steady-state levels of iron-regulated transcripts upon oxygenation or 2,2'-bipyridyl addition occurred within 5 min, indicating that a relatively small, labile intracellular pool of Fe(II) regulates the expression of these activities. The strength of the anaerobic repression was dependent on the low affinity, Fe(II)-specific iron transporter, encoded by FET4, suggesting that this Fe(II) pool was linked in part to iron brought into the cell via Fet4 protein. The data suggest a model in which dioxygen directly or indirectly modulates the Fe(III)/Fe(II) ratio in an iron pool linked to Aft1 protein while bipyridyl increases this ratio by chelating Fe(II). These results indicate that dioxygen both modulates the sensitivity to iron-dependent transcriptional regulation and acts as substrate for Fet3 in the ferroxidase reaction catalyzed by this ceruloplasmin homologue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.