Abstract
A single bout of exercise increases the rate of insulin-stimulated glucose uptake and metabolism in skeletal muscle. Exercise also increases insulin-stimulated glucose 6-phosphate in skeletal muscle, suggesting that exercise increases hexokinase activity. Within 3 h, exercise increases hexokinase II (HK II) mRNA and activity in skeletal muscle from rats. It is not known, however, if a single bout of moderate-intensity exercise increases HK II expression in humans. The present study was undertaken to answer this question. Six subjects had percutaneous biopsies of the vastus lateralis muscle before and 3 h after a single 3-h session of moderate-intensity aerobic (60% of maximal oxygen consumption) exercise. Glycogen synthase, HK I, and HK II activities as well as HK I and HK II mRNA content were determined from the muscle biopsy specimens. The fractional velocity of glycogen synthase was increased by 446 +/- 84% after exercise (P < 0.005). Hexokinase II activity in the soluble fraction of the homogenates increased from 1.2 +/- 0.4 to 4.5 +/- 1.6 pmol.min-1.microgram-1 (P < 0.05) but was unchanged in the particulate fraction (4.3 +/- 1.3 vs. 5.3 +/- 1.5). HK I activity in neither the soluble nor particulate fraction changed after exercise. Relative to a 28S rRNA control signal, HK II mRNA increased from 0.091 +/- 0.02 to 0.195 +/- 0.037 (P < 0.05), whereas HK I mRNA was unchanged (0.414 +/- 0.061 vs. 0.498 +/- 0.134, P < 0.20). The increase in HK II activity after moderate exercise in healthy subjects could be one factor responsible for the enhanced rate of insulin-stimulated glucose uptake seen after exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.