Abstract
Supernatant protein factor (SPF) is a novel cholesterol biosynthesis-accelerating protein expressed in liver and small intestine. Here, we report on the physiological role of SPF by using Spf-deficient mice. Although plasma cholesterol levels were similar in chow-fed Spf-/- and wild-type (WT) mice, fasting significantly decreased plasma cholesterol levels in Spf-/- mice but not in WT mice. While fasting reduced hepatic cholesterol synthesis rate in WT mice, a more pronounced reduction was observed in Spf-/- mice. The expression of cholesterogenic enzymes was dramatically suppressed by fasting both in WT and Spf-/- mice. In contrast, hepatic SPF expression of WT mice was up-regulated by fasting in peroxisome proliferator-activated receptor alpha (PPAR-alpha)-dependent manner. These results indicate that in WT mice, the decrease of hepatic cholesterol synthesis under fasting conditions is at least in part compensated by SPF up-regulation. Fibrates, which function as a PPAR-alpha agonist and are widely used as hypotriglycemic drugs, reduced hepatic cholesterol synthesis and plasma cholesterol levels by approximately one-half in Spf-/- mice but not in WT mice. These findings suggest that co-administration of fibrates and an SPF inhibitor may reduce not only plasma triglyceride but also cholesterol levels, indicating that SPF is a promising hypocholesterolemic drug target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.