Abstract

Regulation of H2 oxidation activity and hydrogenase protein levels in the free-living hydrogen bacterium Alcaligenes latus was investigated. Hydrogenase activity was induced when heterotrophically grown cells were transferred to chemolithoautotrophic conditions, i.e., in the presence of H2 and absence of carbon sources, with NH4Cl as the N source. Under these conditions, H2 oxidation activity was detectable after 30 min of incubation and reached near-maximal levels by 12 h. The levels of hydrogenase protein, as measured by a Western blot (immunoblot) assay of the hydrogenase large subunit, increased in parallel with activity. This increase suggested that the increased H2 oxidation activity was due to de novo synthesis of hydrogenase protein. H2 oxidation activity was controlled over a surprisingly wide range of H2 concentrations, between 0.001 and 30% in the gas phase. H2 oxidation activity was induced to high levels between 2 and 12.5% O2, and above 12.5% O2, H2 oxidation activity was inhibited. Almost all organic carbon sources studied inhibited the expression of hydrogenase, although none repressed hydrogenase synthesis completely. In all cases examined, hydrogenase protein, as detected by Western blot, paralleled the level of H2 oxidation activity, suggesting that control of hydrogenase activity was mediated through changes in hydrogenase protein levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call