Abstract

1. Pretreatment of bovine tracheal smooth muscle (BTSM) with histamine (1-100 microM, 1 h) induced a concentration-dependent desensitization of the contractile response to subsequently administered histamine, with a reduction of the maximum response of 72 +/- 8% (n = 5) following pre-exposure to 100 microM histamine. In contrast, concentration-response curves to the muscarinic agonist, methacholine were not affected following histamine pretreatment, indicating a homologous desensitization. Furthermore, concentration-response curves to NaF, a G-protein activator, were not altered following histamine pre-incubation. 2. The histamine H1-receptor (H1R) desensitization could be antagonized by mepyramine (an H1-receptor antagonist, 1 microM) but not by cimetidine (an H2-receptor antagonist, 10 microM), indicating that the desensitization occurred via stimulation of histamine H1-receptors, without evidence for the involvement of histamine H2-receptors. 3. Indomethacin (10 microM) did not block the H1R desensitization, suggesting no involvement of prostaglandins. Furthermore, histamine pre-incubation in calcium free medium still induced a functional uncoupling of H1R. 4. GF 109203X, a protein kinase C (PKC) inhibitor, and H-7, a non-selective kinase inhibitor, did not antagonize the homologous H1R desensitization. 5. The steady-state level of H1R mRNA, assessed by Northern blot analysis, was not affected by prolonged histamine exposure (100 microM, 0.5, 1, 2, 4, 16 and 24 h). 6. These results suggest that histamine induces desensitization of the H1R at the level of the receptor protein, which involves a mechanism independent of PKC, PKA, PKG and calcium influx, suggesting the involvement of a receptor-specific kinase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.